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Quaternion Feedback Regulator for Spacecraft
Eigenaxis Rotations

B. Wie,* H. Weiss,t and A. Arapostathis}
University of Texas at Austin, Austin, Texas

A quaternion feedback regulator is developed for spacecraft eigenaxis rotational maneuvers. The Euler’s eigenaxis
rotation that provides the shortest angular path between two orientations is considered as an “optimal”® maneuver.
The control algorithm basically consists of linear feedback of error quaternions and body rates, and includes
decoupling control torque that counteracts the natural gyroscopic coupling torque. But, in some cases with small
angular rates, the gyroscopic decoupling control is not necessary for eigenaxis rotations. It is shown that large-angle,
rest-to-rest maneuver about the Euler’s eigenaxis can be simply achieved by a proper selection of feedback gain
matrices of the quaternion feedback regulator. Furthermore, previous results in quaternion feedback stability analysis
based on the Lyapunov method are significantly extended. Robustness of the globally stable, quaternion feedback
regulator to spacecraft inertia matrix uncertainty is also discussed. Simulation results show that a proper selection
of the quaternion feedback regulator gains provides near-eigenaxis rotation, even in the presence of initial body rate

and inertia matrix uncertainty.

1. Introduction

OME future spacecraft will need an attitude control system

bthat provides rapid multitarget acquisition, pointing, and
tracking capabilities. Many spacecraft control systems are cur-
rently based on a sequence of rotational maneuvers about each
control axis. The maneuver time-of such successive rotations is
longer (by a factor of 2 or 3) than that of a single maneuver
about the eigenaxis. Because the overall cost of a space-based
laser system is greatly affected by the average retargeting time,
the development of control algorithms for rapid retargeting is
crucial. It also may be necessary to maintain rotation about an
inertially fixed axis during an acquisition mode so that a partic-
ular sensor will pick up a particular target.

In this paper, various quaternion feedback control al-
gorithms are investigated for large-angle retargeting maneu-
vers (possibly about the eigenaxis). Different gain matrices for
the quaternion feedback regulator are studied from both math-
ematical and practical viewpoints. Previous results in the use of
quaternions for large-angle maneuver controls are significantly
extended. The concept and mathematical results presented in
this paper do not appear to have been published previously
in the open literature. In order to distinguish the new results
of this paper from the previous studies by many other re-
searchers, we briefly review the literature in three-axis, large-
angle maneuver control of a rigid spacecraft.

Many open-loop control schemes have been studied for
large-angle maneuvers (Refs. 1 and 2). The open-loop schemes,
however, are sensitive to spacecraft parameter uncertainty, un-
expected disturbances, and initial attitude rates. In general, a
combination of feedforward (open-loop) and feedback
(closed-loop) controls is desirable. The eigenaxis rotation via
feedforward command has been used in maneuvering control
of Apollo, Skylab, and Shuttle. It has been considered as a
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natural approach to a rapid, rotational maneuver.>> From a
fuel-optimal control viewpoint, however, Redding and Adams®
have developed a noneigenaxis rotational maneuver for the
Shuttle with significant cross-axis jet couplings. Nonlinear op-
timal feedback control schemes,”® a sliding mode concept,’
and a general nonlinear feedback control theory'® have also
been applied to the spacecraft attitude control problems.

A simple concept using Cayley-Rodrigues parameters
(Gibbs’ vector) or quaternions as attitude feedback signals was
first studied by Mortensen'!!? in mid-1960. Meyer'® has stud-
ied similar three-axis control using direction cosine matrices.
Hrastar'# has applied Mortensen’s concept'! to the large-angle
slew control of the OAO spacecraft. The use of quaternions as
a measure of attitude errors was also suggested by Ickes.!?
Recently, Wie and Barba!® have extended the quaternion feed-
back concept to a spacecraft equipped with pulse-width pulse-
frequency modulated reaction jets. A similar quaternion
feedback scheme was also studied by Vadali and Junkins’ for
a spacecraft equipped with reaction wheels.

Mortensen'? has chosen the quaternion feedback gain in
each axis to be inversely proportional to its principal moment
of inertia. Thus, his scheme requires an exact knowledge of the
inertia matrix in order to be globally stable. In Refs. 7 and 16,
the quaternion gains are restricted to be identical in each axis.
The reason behind such special selections of quaternion feed-
back gains is to facilitate determination of a Lyapunov func-
tion for the proof of global stability.

Expanding on these previous studies, we present new results,
which are summarized as follows:

1) For the ideal case of an exactly known inertia matrix, a
rest-to-rest maneuver about the eigenaxis can be simply
achieved by use of the quaternion feedback regulator with a
proper selection of the feedback gain matrices.

2) The quaternion feedback controllers studied by Vadali
and Junkins’ and Wie and Barba!® are shown to be globally
stable regardless of spacecraft inertial property uncertainty;
hence, they are globally stable and robust. 1t is also shown that
the gain selection in Refs. 7 and 16, however, does not result in
the eigenaxis rotation, even with perfect gyroscopic decoupling
control.

3) A Lyapunov function that provides a sufficient condition
for the global stability of the proposed controller is derived.
The new result includes all previous results”!>1¢ as special
cases. Furthermore, the new result allows a proper gain selec-
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tion, which provides near-eigenaxis rotation with guaranteed
global stability.

4) For the first time, the g, vs g{i #j) plot is introdueed,
where g; is the ith quaternion element. This plot clearly illus-
trates an “optimal” maneuver with the shortest angular path
(a straight line between two points). Using digital simulation,
performance and stability of four different gain matrices are
compared for a 160-deg (eigenangle) rotational maneuver con-
trol of a rigid spacecraft with inijtial body rate and 10% inertia
matrix uncertainty.

II. Eigenaxis Rotation via Quaternion Feedback

In this section, the general case of a rigid spacecraft rotating,

under the influence of body-fixed torquing devices is consid-
ered. For simplicity, an ideal control torquer is assumed; how-
ever, as can be found in Refs. 5, 7, 14, and 16, reaction wheels,
control moment gyros, or pulse-modulated jets must be prop-
erly accommodated for more detailed analysis.

Euler’s Equations of Motion

Euler’s equations describe the rotational motion of a rigid
body about body-fixed axes with origin at the center of mass.
The equations that follow are associated with the general case
in which the body-fixed control axes do not coincide with the
principal axes of inertia:

Jo =QJo +u n
where o = [w,,w,,w,]7 is the angular velocity vector,

u = [u;,u5,u;]” the control terque vector, J the inertia matrix,
and £ a skew-symmetric matrix defined by

0 —w3 @

2

Q 4 _ 3 0 — ( )
—w, 0

The subscripts 1, 2, and 3 denote the body-fixed control axes.

It is assumed that the angular velocity components along the
body-fixed control axes are measured by rate gyros and used to
calculate the orientation. Since quaternions are well suited for
onboard real-time computation spacecraft orientation is now
commonly described in terms of quaternions (e.g., HEAO,
Space Shuttle, and Galileo!?).

Quaternion Kinematics

Euler’s rotational theorem states that a rigid-body attitude
can be changed from any given orientation to any other orien-
tation by rotating the body about an axis called Euler axis or
eigenaxis. A simple kinematic relation between the eigenaxis
rotation and conventional body-axis and space-axis rotations
was studied by Wie.'® The quaternion defines the rigid-body
attitude as a Euler-axis rotation. The vector part of the quater-
nion (the first three components) indicates the direction of the
Euler axis. The scalar part of the quaternion (the fourth com-
ponent) is related to the rotation angle about the Euler axis.

The four elements of the quaternion are defined as

q; = c¢; cos(¢/2), i=1273 (3a)
44 =cos(¢/2) (3b)

where ¢ is the magnitude of the Euler axis rotation, and
(c1,¢5,c;) are the direction cosines of the Euler axis relative to a
reference frame.

The quaternion kinematic differential equation is described
by

=10¢ + 190 (42)
ds= —107q ~ (4v)
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where ¢ = [¢,,4,,95]7 and £ is defined by Eq. (2). Using Egs.
(3), one can show that the quaternion satisfies the relation

gi+93+a3+4qi=1 (5)

Equations (4) were first published by Robinson'® in 1958
and derived independently by Mortensen,'! Margulies,® and
Harding,?! in mid-1960. Similar equations, where the angular
rates are expressed in terms of quaternions and quaternion
rates, can be found in Whittaker.?? It is interesting to note that
Eqs. (4) were not derived by Hamilton, Euler, or Whittaker.
Various strapdown attitude determination algorithms based on
Eqs. (4) can be found in Refs. 23-25. A semianalytical solution
of the quaternion kinematical equation can be found in Ref.
26.

Quaternion as a Measure of Attitude Errors

The initial quaternion [ql(O),qz(O) 45(0),4,4(0)] defines the ini-
tial orientation of the spacecraft body axis at ¢ = 0. The com-
manded quaternion [g,.,45.,93..94.] defines. the desired orien-
tation. The error quaternion that represents the attitude error
between the current orientation and the desired one is then
given by ’

Qie Gac 93c —Y92c —Yic q:
92e — —q3 9ac 91c —q2 q> (6)
93¢ 92e  —Y1c Q4. — 3t |93

qae 9ic 92 93¢ Gac qs

The equation is the result of successive quaternion rotations
using the quaternion multiplication and inversion rules.?

For the special case of attitude regulation with respect to the
reference frame specified at 1 = 0, the commanded quaternion
is [0,0,0,1]. In this case, the error quaternion coincides with the
current attitude quaternion; i.e., ¢, = ¢ and ¢, = ¢,.

For the case with [¢,.,92c,9394.] =[0,0,0,1] and small atti-
tude changes from the reference frame, we can approximate the
error quaternion by

29, =2¢,=0, =123 (N
where the 6, are the conventional Euler angles For this case,
the error quaternion rate also can be approximated as

24, = 24; = w, i=1.273 (®)

Quaternion Feedback Regulator

The proposed feedback controller for eigenaxis rotations
consists of linear error-quaternion feedback, linear body-rate
feedback, and a nonlinear body-rate feedback term that simply
counteracts the gyroscopic coupling torque. Following Eq. (1),
the control torque vector u is, in general, represented as

u=—-QJo — Do — Ky, )

where D and K are 3 x 3 constant gain matrices to be properly
determined. For simplicity, we shall consider the case of ¢, = ¢.
The gyroscopic decoupling feedback control is not necessary
for slow rotational maneuvers. But, in some cases (e.g., see
Refs. 27 and 28), it may be desirable to counteract the natural
gyroscopic coupling by control torque.

Eigenaxis Rotation

In this section, we show that a large-angle, rest-to-rest reori-
entation maneuver about the eigenaxis can be achieved by a
proper selection of the gain matrices of the quaternion feed-
back regulator. An ideal case of @(0) = 0 is considered here.

According to Euler’s rotation theorem, the angle ¢ of Eqgs.
(3) is always smaller than the algebraic sum of three successive
Euler angles and represents the shortest angular path between
two orientations, For certain cases, it may be desirable to ro-
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tate the spacecraft about the Euler axis to perform a minimum
angular path maneuver. This can be achieved by using a
quaternion feedback of the form kJq, where k is a scalar, J the
inertia matrix, and g the vector part of the quaternion. Since
the vector ¢ coincides with the spacecraft eigenaxis, the control
torque kJg causes the Euler axis rotation to occur. Notice that,
unless the principal inertias are all equal, the eigenaxis rotation
cannot be accomplishéd if the control torque vector lies along
the Euler axis or eigenaxis.

Consider a gain selection D = dJ and K = kJ for the eigen-
axis rotation (d and k are scalars). The closed loop equations of
motion then become

o= —dn —kq (10a)
§ =10¢ +1q,0 (10b)
do=—lo7q (10c)

Instead of solving the preceding equations directly, we assume
that the solution is the eigenaxis rotation

4(1) = c,()q(0) (1
where ¢,(?) is a scalar function of time with c,(0) =1 and ¢(0)
is the initial quaternion vector.

Substituting Eq. (11) into Eq. (10a) gives
o = —do —kc()g(0)  [0(0) =0]
which has the solution

(1) = c,(1)¢(0) (12)

where

3
() = —k '[ e~ =" (1)dr
0
Substituting Eq. (12) into Eq. (10b) gives

4 =324 +19.0 = 34.(1)c.()q(0) (13)

where ¢ = 0 since both ¢ and w have the same direction as
4(0). Equation (13) has the solution -

(1) = c,(1)g(0)

where

e & [1 +1 f ' q4<r)cw(r>dr]

This shows that if the applied control torque vector is along
the direction of JA, where 4 is a unit vector along the eigenaxis,
the eigenaxis rotation can be achieved for the ideal case of
(0) = 0. A more rigorous proof can be done by showing that,
if and only if 2¢ =0, o is collinear with ¢ and the rotation is
about the eigenaxis.

III. Stability Analysis

In this section, we discuss the stability of the closed-loop
system with general D and K matrices

Jo =QJo — u2Jo — Do — Kq (14a)
4§ =399 + 39,0 (14b)
da=—307¢ (14c)

where u = 1 means that the control torque exactly counteracts
the gyroscopic coupling torque, and p =0 means that only
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quaternion feedback and linear rate feedback are used. For
simplicity, we assume that the commanded quaternion is
[0,0,0,1] and, therefore, the error quaternion can be replaced by
the current attitude quaternion.

Assuming that K ! exists and that K —* J is positive definite,
we define the following Lyapunov function

V=10"K o +q}+ 3+ g} + (g, — 1)?
= Jo K~ 1o +2(1 - 4 (15)

Note that V is positive definite and asymptotically unbounded

in . This particular form of Lyapunov function is a general-

ization of Lyapunov functions used in Refs. 7, 12, and 16.
The time derivative of ¥V is given by

V=10TK o + 1o Ko —24,

Assuming that K—'J = (K~ 'J)7, we can calculate V along the
system trajectories as

V=0T —24,
=—0"K"'Do + (1 - o K~ 'QJo (16)

The second term in Eq. (16) is ideritically zero under the fol-
lowing conditions: 1) precise cancellation of the gyroscopic
coupling torque, i.e. u =1, or 2) no cancellation of the gyro-
scopic couplmg torque and selection of the quatermon feed-
back gain matrix K such that

K~'=aJ + gl (17)

whete « and f are nonnegative scalars and I is a 3 x 3 unit
matrix.
Using Eq. (17), we obtain

oK 1QJo = 0 T(od + pHRJw
= u(J0) '2(Jo) + o Qo (18)
Since 2 = —Q7, the first term in Eq. (18) is identically zero.
Since R is defined by Eq. (2), Q0 = »7Q =0, and the second
term of Eq (18) is identically zero. Equation (17) guarantees
that K—' exists and that K=!J is symmetric and positive

definite.
Under condition 1 or 2, we find that

V=—0K 'Do (19)

Global stability is guaranteed if K~'D > 0.2**° A natural se-
lection D that guarantees this is

D=ds (20)
where d is a positive scalar.

Remark 1

In the case where the body-fixed axes coincide with the prin-
cipal axes, the inertia matrix is given as

J =diag[J;,J,,J3] @y
For this case, Eq. (17) can be reduced to

1 1 1
g T 22
o, + § a4+ B °‘J3+B:| (22)

K= diag[
and Eq. (20) can be relaxed to

D = diag|[d,.d,,ds] > 0 (23)



378 WIE, WEISS, AND ARAPOSTATHIS

Observe that o =0 implies K = (1/8)I, which indicates an
identical gain in each axis. The stability result for the case was
derived in Refs. 7 and 16. Also, observe that f =0 implies
K = (1/)J ~'. This case was studied by Mortensen.'> Hence,
previous results for the feedback gains can be derived as special
cases of the matrix K defined in this paper.

Remark 2

The following constraint for the global stability can be ob-
tained from Eq. (22):

A A I N
PR S Bt SIS Sk
K, K, K,

0 e

This equation indicates that only two gains can be selected
independently. The third gain is related to the first and second
gains via the principal moments of inertia.

Remark 3

Because we want an eigenaxis rotation, and because this can
be achieved only by a quaternion gain matrix proportional to
the inertia matrix, the selection of o and § in Eq. (17) should
minimize some measure of the distance between the gain ma-
trix and the inertia matrix. A natural selection of a perfor-
mance index is

PI= i (J; + B —1/7)? : (25)

i=1

Minimization of Eq. (25) with respect to o and f leads to the
following results:

(g A ) (o

o=[(z )z ) A 52))
()2 o

Remark 4

The equilibrium points associated with the system described
by Egs. (14)arew =0,4=0,g,=1lorw=0,¢4 =0, g, = —1.
The selection of the quaternion gain matrix sign determines the
convergent equilibrium point. The Lyapunov function defined
in Eq. (15) considers the negative quaternion feedback gain and
the equilibrium point @ =0, ¢ =0, g,=1. The Lyapunov
function associated with the positive quaternion feedback gain
and the equilibrium poirit ® =0, ¢ =0, g, = —1 is described
by

V=io"K o +q¢i+q3+¢5+(qg,+ 1)
=10TK o +2(1+ q4) )
In this case, Eq. (14a) is replaced by
Jo =(1-pRJo —Do + Kq (28)

Using Egs. (27), the stability analysis is identical to the one
discussed previously.

Remark 5
In order to guarantee the shortest angular path, the sign of
the quaternion feedback gain is defined by the initial value of
qs. The corresponding control torque is then
u=—uQ2Jo — Do — sign[q,(0)]Kq (29)

where p may take the values 0 or 1 and K > 0.

J. GUIDANCE

Remark 6

Selection of K and D as K~ ! = oJ + BI, D = dJ leads to the
following Lyapunov function and its decay rate

V =0T + BDJo + 2(1 F ¢,) (30a)
V = —do (o] + fl)Je (30b)

where 1 — ¢, indicates negative quaternion feedback and 1 + ¢,
indicates positive quaternion feedback.
Since

—do T + pIJo = —2d[SoT(] + BT ) Jo + 2(1 F g,)]
then
V= -2dv
and therefore
V(1) = V(t,)exp[ —2d(t — t0)] 31

Equation (31) defines the maximal decay rate of the selected
Lyapunov function. Observe that the maximal decay rate is
independent of the quaternion feedback gain.

Remark 7

The constraints on the quaternion feedback gain matrix are
imposed only if the gyroscopic coupling torque is not canceled
by the control torque. In the case of precise cancellation of the
gyroscopic torque, the quaternion feedback gain matrix is un-
constrained. Simulation results show that the closed-loop sys-
tem is still (globally) stable even when the quaternion feedback
gain is proportional to the inertia matrix, and the control
torque does not counteract the gyroscopic torque via the gyro-
scopic decoupling.

IV. Selection of the Quaternion Feedback Gain and
the Damping Gain Matrices
As discussed in Sec. I, the quaternion feedback gain matrix
K should satisfy K = kJ and D = dJ, where k and d are positive
scalars, in order to achieve eigenaxis rotation:
Let 4 be a unit vector along the eigenaxis; we then have
q =sin(¢/2)A. Assuming that the angular rate o is small
enough to allow the gyroscopic term to be neglected (or that
the gyroscopic torque can be counteracted if its effect is signifi-

cant), Eq. (14a) can be approximated by

(¢ +dd + k sing/2)Ji =0 (32)

As w; assume the eigenaxis rotation, the angular rate satisfies
o = PA.
With JA #0, Eq. (32) is reduced to

¢ +dp+ksing2=0 (33)
For the purpose of selecting gains, we may approximate

sing /2 by ¢/2, for ¢ < 90 deg. We then have the well-known
linear second-order equation

¢+dd+kp/2=0 (34)
where the damping ratio { and the natural frequency w, satisfy
d=2w,; kf2=w?

Proper selection of { and w, defines 4 and k. For
¢(0) = 180 deg, however, a modified settling time relation of
8/¢w, should be used (instead of the standard 4/{w, relation) to
account for the nonlinear effect of sin(¢/2).
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V. Global Stability with Robustness to Inertia
Uncertainty

Let J,, denote the nominal value of the inertia matrix and AJ
the uncertainty. Then, Eq. (14a) has the following form:

(U, + Ao =, + Al)o — Q0 — Do —Kq  (35)

where the gyroscopic torque is not precisely canceled because
of inertial property uncertainty.
Equation (35) may be rewritten as

Jo = QAJo — Do — Kq (36)

where J =J, + AJ. :

Using the results of Sec. III, we realize that K—! = I (or,
equivalently, K =4kI) can guarantee global stability even
though we do not know the value of AJ. The price we pay for
robustness is that the rotation is not performed about the
eigenaxis.

In Refs. 7 and 16, the stability result was derived for the case
of identical gains for all axes; however, robustness issues were
not considered.

Remark 1

Consider the case in which we have a perfect cancellation of
the gyroscopic torque. For this case, minimization of the fol-
lowing performance index

0
PI=%J [a%2qTT g +2a1a,97T ‘o + dloTT ‘v
o

— ;9,070 + uTJ " 'u) dt 37N

with respect to #.and subject to

Jo =u (38a)
§ =324 +39.0 (38b)
o= —l07q (380

leads to the optimal control torque
W= —aq—ao0 39)

The preceding result is derived when we assume that the
adjoint vector has the form A=[A2,A]4,]7, where
iy =a,q + a,0, 4, = a0, and 1,4 = const.”’

Equation (39) indicates that the optimal control associated
with Eq. (37) consists of identical quaternion feedback gain for
all the axes. This globally stable, optimal control is also robust
to inertia matrix uncertainty.

VI. Design Example
In this section, we present a control design example and
simulation results. An asymmetric rigid spacecraft with the
following inertia matrix is considered:
1200 100 —200
J=| 100 2200 300 | Kg - m?2
—200 300 3100

The nominal values of the principal moments of inertia are
assumed as J; = 1200, J, = 2200, and J; = 3100 for controller
design. The products of inertia or the control-axis misalign-
ment relative to the principal axes are assumed to be quite
uncertain; hence, they are not used in controller gain selection.
The initial quaternion elements at ¢ = 0 are assumed as

[91,92:95:44] = [0.57,0.57,0.57,0.159]

which corresponds to an initial eigenangle-to-go of 161.7 deg.
The desired reorientation time or settling time is assumed

FEEDBACK REGULATOR FOR SPACECRAFT EIGENAXIS ROTATIONS 379

as 50s. For a critically damped response, we have
o, = 0.158 rad/s, which results in k£ = 0.05 and d =0.316.
Four different cases are considered here, but each case has
the same rate gain matrix of D =0.316 diag(1200,2200,3100).
All of the quaternion feedback gain matrices are normalized
with respect to K, = 110. '
Case 1

K; = k/J; by Mortensen:!?
K = diag(201,110,78)
Case 2
K = kI by Vadali/Junkins’ and Wie/Barba:!¢
K = diag(110,110,110)
Case 3
K = (aJ + BI)~! of Egs. (26):
K = diag(72,110,204)

Case 4
K =kJ of Sec. 1V:

K = diag(60,110,155)

In simulation, we assume 10% mismatching of J; (i = 1,2,3)
and an initial body rate of 0.01 rad/s in each axis; hence,
1 = 0.9 for the cancellation of the gyroscopic coupling term in
Eq. (14a). Figure 1 shows time histories of the quaternions and
control torques. We notice that all four cases have similar g,
histories and that cases 3 and 4 are nearly identical in all the
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Fig. 1 Time histories of quaternions and control torques.
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Fig. 2 Time histories of angular rates, and gq; vs g; plots.

quaternion histories. A similar observation can be made for the
angular velocity time histories of cases 3 and 4 shown in Fig. 2.
The time-history plots of quaternions or angular velocities,
however, do not indicate the deviation of the angular path
from the eigenaxis rotation. The g; vs g, plots in Fig. 2 clearly
indicate the angular deviation of the instantaneous rotational
axis with respect to the initial eigenaxis. The perfect eigenaxis
rotation becomes a straight line in the g; vs g; plot. The g, vs g,
plots in Fig. 2 show that case 4 has a stable, near-eigenaxis
rotation, even in the presence of 10% mismatching of the iner-
tia matrix. It can also be seen that case 1 and case 2 (k = kJ)
have a noneigenaxis rotation.

VII. Conclusions

‘We have shown that, for the ideal case, the eigenaxis rotation
can be simply achieved by a proper selection of the feedback
gain matrices of the proposed quaternion feedback regulator.
We have also derived a more general Lyapunov function for
the quaternion feedback control, which includes all of the pre-
vious results as special cases. Since the eigenaxis rotation pro-
vides the shortest angular path, the proposed controller may
provide a simple solution for the large-angle reorientation of
future spacecraft. The mathematical results of this paper will
also be of interest to control researchers who use the Lyapunov
method for stability analysis of highly coupled, nonlinear,
dynamical systems.
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